PH (complexity) - definitie. Wat is PH (complexity)
Diclib.com
Woordenboek ChatGPT
Voer een woord of zin in in een taal naar keuze 👆
Taal:

Vertaling en analyse van woorden door kunstmatige intelligentie ChatGPT

Op deze pagina kunt u een gedetailleerde analyse krijgen van een woord of zin, geproduceerd met behulp van de beste kunstmatige intelligentietechnologie tot nu toe:

  • hoe het woord wordt gebruikt
  • gebruiksfrequentie
  • het wordt vaker gebruikt in mondelinge of schriftelijke toespraken
  • opties voor woordvertaling
  • Gebruiksvoorbeelden (meerdere zinnen met vertaling)
  • etymologie

Wat (wie) is PH (complexity) - definitie

ALGORITHMIC COMPLEXITY CLASS; THE UNION OF ALL COMPLEXITY CLASSES IN THE POLYNOMIAL HIERARCHY; THE SET OF LANGUAGES EXPRESSIBLE BY SECOND-ORDER LOGIC

PH (complexity)         
In computational complexity theory, the complexity class PH is the union of all complexity classes in the polynomial hierarchy:
Hall PH         
  • XPH-1 prototype in flight. Note the open pilots canopy.
1929 FLYING BOAT FAMILY BY HALL
User:Nigel Ish/Sandbox Hall PH; Hall PH-1; Hall PH-2; Hall PH-3; Hall PH-2 seaplane
The Hall PH was an American flying boat of the 1930s. It was a twin-engined biplane, developed from the Naval Aircraft Factory PN and could hence trace its lineage back to the Felixstowe flying boats of World War I.
Computational complexity         
MEASURE OF THE AMOUNT OF RESOURCES NEEDED TO RUN AN ALGORITHM OR SOLVE A COMPUTATIONAL PROBLEM
Asymptotic complexity; Computational Complexity; Bit complexity; Context of computational complexity; Complexity of computation (bit); Computational complexities
In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements.

Wikipedia

PH (complexity)

In computational complexity theory, the complexity class PH is the union of all complexity classes in the polynomial hierarchy:

P H = k N Δ k P {\displaystyle \mathrm {PH} =\bigcup _{k\in \mathbb {N} }\Delta _{k}^{\mathrm {P} }}

PH was first defined by Larry Stockmeyer. It is a special case of hierarchy of bounded alternating Turing machine. It is contained in P#P = PPP and PSPACE.

PH has a simple logical characterization: it is the set of languages expressible by second-order logic.